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Abstract

This thesis investigates the use of the Differentiable Neural Computer (DNC) in model-

based Reinforcement Learning (RL). The approach involves learning a predictive,

probabilistic model in a Mixture Density Network (MDN) using a Recurrent Neu-

ral Network (RNN) – MDN-RNN – which is then used to train a controller to perform

optimal actions to receive maximum rewards in an environment.

The MDN-RNN is trained to map a state st and action at at timestep t, to the param-

eters of a Gaussian Mixture Model which are used to sample the predicted next state

st+1 at timestep t +1. Recent research has used Long Short Term Memory (LSTM) as

the RNN layer for the MDN – MDN-LSTM – and achieved promising results on RL

tasks. This research introduces a new MDN architecture that uses a DNC as the RNN

layer, the MDN-DNC.

The experiments conducted for this work find that the MDN-DNC, trained for

fewer epochs, outperforms its LSTM counterpart in the ViZDoom: Take Cover en-

vironment in the mean cumulative rewards received with a controller trained using

simulations of the model generated through the MDN. The MDN-DNC is observed to

learn a more robust model of the environment that is less prone to defects that hinder

training of the controller. The MDN-DNC also outperforms when learning the Pom-

merman Team Competition environment, where quantitative tests are made to compare

the states it predicts against the true states received from the environment.
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Chapter 1

Introduction

“We can only see a short distance

ahead, but we can see plenty there

that needs to be done.”

–Alan Turing, Computing machinery

and intelligence

1Artificial General Intelligence (AGI) can be defined as the intelligence of a ma-

chine that can perform any task that a human can. Creating AGI has been a goal for

research scientists for decades, but has been a difficult feat to achieve. The majority of

advancements in Artificial Intelligence (AI) have been in “Narrow AI” – intelligence

applied to specialized tasks such as classification, regression, transcription, translation,

synthesis, and more (Goodfellow et al., 2016), and in applications such as medical di-

agnosis, stock trading, advertising, and gaming, to name a few. However, these AI

models are often narrowly tailored, and do not generalize (Goertzel and Pennachin,

2007).

Deep Learning is a general purpose framework for representation learning – taking

inputs to learn a representation that is required to achieve an objective (Silver, 2016).

Reinforcement Learning (RL) is a general purpose framework for learning what to do –

selecting actions (making decisions), given a state, to maximize future rewards (Sutton

and Barto, 1998). David Silver states that Deep Reinforcement Learning (deep RL),

the combination of Deep Learning as a mechanism and Reinforcement Learning as an

objective, is a step in the ladder towards AGI (Silver, 2016). Evolution Strategies (ES)

are a related class of algorithms where given a state, actions are selected to maximize

a reward. In both ES and RL, the goal is to learn an optimal policy.
1Parts of this introduction are based on the Informatics Project Proposal for the research carried out.
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2 Chapter 1. Introduction

1.1 Motivation

There have been many advancements in deep RL in recent years. A notable deep RL

approach uses Deep Q-Networks (DQNs), which are able to surpass human perfor-

mance on a range of Atari 2600 games (Mnih et al., 2015). While the DQN is a model-

free deep RL approach, Guided Policy Search is a model-based approach, which uses

a model of the system dynamics to guide the search for an optimal policy (Levine and

Koltun, 2013). Another model-based approach, World Models, learns a predictive,

probabilistic model of the environment in Long Short Term Memory (LSTM), which

is used to search for an optimal policy (Ha and Schmidhuber, 2018).

Recurrent Neural Networks (RNN–LSTM being an example) are adept at modeling

data and tasks that require state that spans over many timesteps in an input sequence.

A particular new enhancement to RNNs is presented in a framework termed the Dif-

ferentiable Neural Computer (DNC). The DNC consists of a LSTM controller that is

attached to an external memory matrix. This type of architecture has achieved state-

of-the-art results over traditional RNNs in various tasks (Graves et al., 2016).

As LSTM has shown to be able to learn a model of an environment that can be used

in deep RL, it follows that the DNC could be used in place of the LSTM to perhaps

learn a better model. And that is the primary motivation of this work. At the time

this research was planned and carried out, a search across Google, Google Scholar,

and research publications archives, did not yield any existing work on using a DNC to

learn a predictive model of an environment in the RL context.

1.2 Hypothesis and Summary

The primary objective of this thesis was to learn a predictive, probabilistic model of

an environment in a Differentiable Neural Computer (DNC), and use this model for

Reinforcement Learning (RL) when searching for an optimal policy for a task in the

environment. The hypothesis was that the DNC, in contrast to traditional LSTM, would

provide a better learned predictive model, in environments with numerous complex

states and dependencies spanning over long timesteps. It was suspected that such a

robust model would be more useful when searching for a policy.

To test this hypothesis, model-based deep RL was performed with an environment

model learned in a Mixture Density Network (MDN) based on a Recurrent Neural

Network (RNN) – a MDN-RNN. LSTM was used as the RNN layer (MDN-LSTM)
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to establish baselines, and then compared against a new architecture that used a DNC

as the recurrent layer in the MDN – a MDN-DNC. Both variants of the MDN were

used to learn the ViZDoom: Take Cover environment, which was then used to train

a simple controller using Evolution Strategies, in an environment simulated by the

MDN, to learn an optimal policy that maximized rewards. Additionally, both variants

of the MDN were used to learn the Pommerman Team Competition environment, on

which quantitative tests were made to compare the states predicted against the true

states received from the environment. In either case, the MDN-DNC outperformed the

MDN-LSTM in the experiments conducted.

1.3 Thesis Outline

Some important background information is provided in Chapter 2. Chapter 3 de-

tails the work undertaken, describing the conceptual design and actual implementa-

tion, along with problems and difficulties encountered through the process. Chapter 4

gives details of the particular experiments that were conducted during the research.

The results of the experiments and an analysis are provided in Chapter 5. And finally,

conclusions drawn and further work are covered in Chapter 6.





Chapter 2

Background

This chapter is aimed at providing the reader with background information on the core

concepts and frameworks central to this thesis.

2.1 Model-Based Learning

According to Sutton and Barto (2017), in the Reinforcement Learning (RL) context,

a model of an environment is “anything” that an AI agent can use to predict how an

environment will respond to its actions. That is, “Given a state and an action, a model

produces a prediction of the resultant next state and next reward”. The model can be

used to simulate an environment to produce simulated experience in which the agent

learns. Or the model can be consulted in the live environment to get probabilistic

predictions of what the next state could be, to facilitate learning. This is in contrast

to model-free RL methods where no such predictive model is used, and learning is

performed using only the live environment itself.

2.1.1 Guided Policy Search

Guided Policy Search (GPS) is a model-based RL method proposed by Levine and

Koltun (2013). The GPS approach uses differential dynamic programming (DDP) to

generate “guiding samples”, that assist policy search by examining regions with high-

reward. The guided samples are drawn from a distribution built around a DDP solution.

Although the policy search component is model-free, DDP requires a model of the

system dynamics. The DDP can be initialized from example human demonstrations,

or an offline planning algorithm. Regularized importance sampled policy optimization

5



6 Chapter 2. Background

incorporates the guided samples into the policy search. Levine and Koltun (2013)

evaluate GPS by learning neural network controllers for swimming, hopping, walking,

and simulated 3D humanoid running. The authors show that GPS outperforms other

RL methods on these tasks.

2.1.2 World Models

World Models is another notable framework for model-based RL, proposed by Ha and

Schmidhuber (2018). The framework aims to train an agent that can perform well

in virtual gaming environments. World Models consists of three main components:

Vision (V), Model (M), and Controller (C) that interact together to form an agent.

The Vision consists of a Variational Autoencoder (VAE), which compresses state

frames taken from the gameplay into a latent vector z. The Model consists of a Mixture

Density Network (MDN), which involves outputting a mixture density model from a

Recurrent Neural Network (RNN). This MDN-RNN takes latent vectors z from Vision

and predicts the next frame. And finally the Controller is a simple single layer linear

neural network that maps the output from Model to actions to perform in the environ-

ment. The Controller is trained using Evolution Strategies, particularly the CMA-ES

algorithm.

2.2 MDN-RNN

A Mixture Density Network (MDN), developed by Bishop (1994), combines a mixture

density model with a neural network. The goal of the neural network is to output the

parameters of a mixture density model which can be used to sample from to get an

output, rather than have the neural network produce the output directly. The MDN

can be trained to output the parameters of a Gaussian Mixture Model (GMM), which

include a set of probabilities (coefficients for each mixture), set of means, and set of

standard deviations.

The MDN approach is particularly useful when the desired output cannot simply

be the average of likely correct outputs. In such data, mean square error (MSE) will

not work. Take for example a toy problem where a single input x could yield multiple

outputs y according to some probabilities. For example, at x = 0.25, y could equal

{0,0.5,1}, with each output occurring with probability of 1/3. In such a case, using

Mean Squared Error to train the network to produce a single output, would likely
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always result in a value of 0.5.

According to Sutton and Barto (2017), “If the model is stochastic, then there are

several possible next states and next rewards, each with some probability of occur-

ring”. Hence, using a MDN to learn a model would be necessary if the environment is

stochastic rather than deterministic – given a current state there may be several possible

next states.

The RNN in MDN-RNN simply means that the neural network that outputs the

MDN parameters is a Recurrent Neural Network. Using an RNN is a certain design

choice, but is not necessary–any type of neural network could be used (for example

a simple feedforward network). The purpose of using an RNN is that it maintains an

internal state over a sequence of inputs, and can hence make more useful predictions

in an environment given future outputs that may depend on distant past inputs.

2.3 Evolution Strategies

According to research scientists at OpenAI, Evolution Strategies (ES) are a scalable

alternative to Reinforcement Learning (Salimans et al., 2017). Where RL is a guess and

check on the actions, ES are a guess and check on the model parameters themselves. In

ES, a population of mutations to seed parameters is created, and all mutated parameters

are checked for fitness (in this case, the maximum cumulative reward received). The

parameters are then adjusted towards the mean of the fittest mutations. Each iteration

of evolution is called a generation.

Note that though Evolution Strategies can be considered to be an alternative to RL,

it can be conjectured that they are perhaps a form of RL. In both, an AI agent is trained

to maximize the rewards it receives on a certain task in an environment, with some

form of trial and error. Thus, in this thesis ES are not distinguished from traditional

RL.

2.3.1 CMA-ES

Covariance Matrix Adaptation Evolution Strategies (CMA-ES) are a particular type

of ES where a covariance matrix, C, is adapted as generations of evolution progress

(Hansen, 2016). Based on the fitness (cumulative rewards) from the previous genera-

tions, compared to the cumulative rewards of the current generation, CMA-ES dynam-

ically adjusts C which is used when sampling from N (m,C), a multivariate normal
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distribution with mean m (the current parameters) and symmetric positive-definite co-

variance matrix C. This allows CMA-ES to cast a wider net for the next population to

try if the fitness is decreasing, or narrow down towards the fittest parameters as fitness

increases, thus dynamically accelerating learning.

2.4 Differentiable Neural Computer

The Differentiable Neural Computer (DNC) is a form of a memory augmented Neu-

ral Network that has shown promise on solving complex tasks that are difficult for

traditional neural networks. In the DNC architecture (Figure 2.1), a core neural net-

work (called the controller – not to be confused with controllers used in Reinforcement

Learning) is attached to an external memory matrix, and is given the capacity to learn

to make use of this memory. When an RNN is used as the controller in the DNC ar-

chitecture, it has the capacity to solve and generalize well on tasks with long temporal

dependencies across a sequence (Graves et al., 2016).

Figure 2.1: The Differentiable Neural Computer architecture (Graves et al., 2016).

At each timestep in a sequence, the DNC receives an external input, and memory

data read from its internal read head mechanism from the previous timestep (with

timestep 0 being a vector of 0’s), to manipulate its internal state and produce the next

output. The memory in the DNC is said to be external because the DNC can be trained

on a smaller memory size, and then attached to a larger memory matrix.
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2.4.1 DNC versus LSTM

The DNC is marketed as a neural Turing machine. A Turing machine is a hypothet-

ical machine that can simulate any computer algorithm given the right capacity and

instructions (Turing, 1937). In the classical example, a Turing machine consists of a

long tape, and a read and write head for the tape which can manipulate symbols on

the tape according to certain instructions (such as a table of rules). The DNC is con-

structed similarly, where a neural network controller capable of learning to perform

instructions to solve a task, is coupled with read and write heads attached to memory

(the tape).

While the DNC generally consists of LSTM as its controller, it is much more pow-

erful than LSTM on its own. The authors show that the DNC is capable of learning

to perform algorithms, and hence the comparison to a Turing machine can be made

– though in the DNC’s case, the algorithm is induced (learned) on its own, when the

DNC is trained with input/output examples, rather than using an explicit table of in-

structions provided externally as with a Turing machine.

In their experiments, Graves et al. (2016) show that the DNC far outperforms tra-

ditional LSTM on a series of tasks. These tasks include simple ones such as copying,

sorting, and associative recall, and more complex tasks such as traversing graphs. The

DNC is also able of generalizing well on variations of input (particularly longer se-

quence lengths) that it has not seen during training, in comparison to LSTM.

2.5 Gaming Environments

There were three gaming environments that experiments for this research were con-

ducted on. These are detailed below.

2.5.1 CarRacing-v0

CarRacing-v01 is part of the OpenAI Gym environment. It presents a continuous con-

trol task in a top-down racing environment. The state consists of a 96x96x3 pixel

frame, so the task is to learn from pixels. The primary goal is to quickly drive through

a randomly generated track, without going off track. The environment returns a reward

of−0.1 for every frame, and +1,000/N for every track tile visited, where N is the total

number of tiles in the track. The episode finishes when either (a) all tiles are visited, or

1https://gym.openai.com/envs/CarRacing-v0/
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(b) the agent drives too far off the track into the grass and falls of the side, or (c) 1,000

timesteps pass – whichever happens first. The actions include:

1. Steer: continuous space between -1 to 1, with values closer to 0 meaning no

steer, closer to -1 meaning steer left, and closer to 1 meaning steer right.

2. Accelerate: continuous space between 0 to 1, with 0 meaning no acceleration,

and 1 meaning maximum acceleration.

3. Break: continuous space between 0 to 1, with 0 meaning no breaking and 1

meaning maximum breaking.

The game is considered solved when an agent is able to achieve a mean reward of

900 over 100 rollouts (episodes).

Figure 2.2: Live gameplay from CarRacing-v0. The goal is to navigate through the track

as quickly as possible.

2.5.2 ViZDoom: Take Cover

ViZDoom2 is a framework intended for research in machine visual learning, and deep

reinforcement learning. It is based on the popular first-person shooter video game

Doom. Take Cover is a particular scenario in ViZDoom, which presents an environ-

ment with the player in a closed room facing monsters on the opposite sides. The

monsters shoot fireballs, which the player has to dodge by traveling left or right. The

primary goal is to live as long as possible by avoiding fireballs. The states again are

raw pixels from the gameplay, so the task is to learn to survive the longest using just

the pixels. The reward is 1 point every 0.028 seconds the player survives, and the game

2http://vizdoom.cs.put.edu.pl/
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is considered solved when the agent is able to live for 750 frames, which is approx-

imately 20 seconds3. The game consists of the following discrete one-hot encoded

actions:

1. Go left: [1,0].

2. Go right: [0,1].

3. No action: [0,0] or [1,1].

Figure 2.3: Live gameplay from ViZDoom: Take Cover. The goal is to stay alive by

dodging fireballs for as long as possible.

2.5.3 PommeTeamCompetition-v0

PommeTeamCompetition-v0 is a custom OpenAI Gym environment. The game is

called Pommerman4, which is a variant of the famous 1993 Super Nintendo Enter-

tainment System (SNES) game called Bomberman. It consists of a randomly drawn

square board, with four players in each corner that can lay bombs to kill their oppo-

nents. The board contains wooden walls and rigid walls, where the wooden walls can

be destroyed with bombs to make a passage towards the opponent. The main goal is to

be the last player standing.

The variant of Pommerman used for this research is called Pommerman Team Com-

petition, which teams up two players on opposite corners. The goal for the team is to

3https://gym.openai.com/envs/DoomTakeCover-v0/
4https://www.pommerman.com/
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work together and kill both players from the other team first. The creators of Pom-

merman state that their purpose is to explore “how to train agents that can operate in

environments with other learning agents, both cooperatively and adversarially”.

Pommerman presents a more challenging environment than CarRacing-v0 and ViZ-

Doom: Take Cover. The environment is more dynamic and stochastic than the former,

with a lot more happening at once. For example the board changes as bombs go off

and new passages are created, whereas in CarRacing-v0 the track remains static and

ViZDoom: Take Cover the room is always the same. In Pommerman, the state of the

player itself is also crucial, such as how many bombs it has, the strength of the bombs

depending on whether the player has picked up power-ups, or whether the player has

picked up the ability to kick a bomb.

Each player can take one discrete action at a time:

1. No action: 0.

2. Go up: 1.

3. Go left: 2.

4. Go down: 3.

5. Go right: 4.

6. Lay a bomb: 5.

PommeTeamCompetition-v0 is also different from CarRacing-v0 and ViZDoom:

Take Cover because the state is represented as a tuple of several components repre-

sented as integers, rather than pixels. So the learning task is different in that the raw

pixels are not used, but the integer coded representation of the state is. The state in-

cludes the partially observable board from the perspective of an agent, the amount of

ammo the agent has available, list of enemies, and more5.

The rewards received in PommeTeamCompetition-v0 are very sparse. Rewards are

received only at the end of each game, when both players of a team are eliminated.

The winning team receives a reward of 1 (for both players, regardless of whether one

player died and the other still managed to win), and the losing team receives a reward

of −1. If there is a tie, both teams receive a reward of −1. This is in stark comparison

to CarRacing-v0 and ViZDoom: Take Cover, where a reward is received at every single

timestep.
5Full state details for Pommerman can be seen at:

https://github.com/MultiAgentLearning/playground/tree/master/pommerman
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Figure 2.4: Live gameplay from PommeTeamCompetition-v0 rendered as pixels for an

external observer. The goal for a team of players is to kill the other team’s players first.

Each player can only observe a portion of the board.





Chapter 3

Methods

This chapter aims to detail the methodology of the research undertaken. The concep-

tual design and actual implementation are described. The tools used are listed. And

problems and difficulties encountered through the process are discussed.

3.1 Experimentation Framework

Figure 3.1: The experimentation framework created to carry out research. All steps are

detailed in this chapter.

The experiments conducted in this research were carried out in the architecture rep-

15



16 Chapter 3. Methods

resented in Figure 3.1. This architecture is based off of the World Models framework of

Ha and Schmidhuber (2018). All components are described in the subsections below,

in the order the steps are carried out to perform a Reinforcement Learning experiment

using this architecture.

Implementing this architecture as a usable experimentation framework was a chal-

lenging feat, given the various components and their complexity. Each component of

the experimentation framework was created as an individual Python script: (1) ran-

dom rollouts.py, (2) vision.py, (3) model.py, (4) controller.py, (5) test.py. Each script

was executable with command line arguments to run it for a particular game, adjust

hyperparameters, toggle GPU usage, and so on.

3.1.1 Step 1 - Collecting Random Rollouts

The first step was to gather 10,000 rollouts (episodes) with an agent performing ran-

dom actions, in the environment being learned. For this, a multiprocessing Python

script, random rollouts.py, was created. The number of child processes spawned were

equal to the number of CPU cores available on the system, unless specified otherwise

through command line arguments. This sped up data collection as multiple rollouts

could be performed in parallel.

For each rollout, the following data was collected:

1. The state pixels from the gameplay at each timestep. In the case of PommeTeamCompetition-

v0, it was instead the tuple of integers representing the state.

2. The random action performed at each timestep.

3. The reward received at each timestep.

A number of ways of encoding this data for storage were tested, including storing

each frame as an individual image, and storing actions and rewards as CSV. NumPy’s

compressed .npz format was ultimately chosen, as it provided the fastest access to data,

with low disk space usage (for CarRacing-v0, 10,000 rollouts occupied 7GB of disk

space, almost half of the disk space using other methods).

How actions were selected randomly had important consequences. For example,

initially for CarRacing-v0, actions were sampled from a uniform random distribution,

and because multiple actions can be performed all at once (steer, break, accelerate),

essentially all actions for all frames would equate to a rapid succession of “steer left,
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steer right, break, accelerate” at the same time. The car would remain almost station-

ary, or inch forward in a straight line very slowly. It was clear that this would not lead

to a diverse selection of states and rewards being recorded.

After much deliberation, the algorithm for sampling random actions was refined,

as shown in Algorithm 1. First, the algorithm repeats the previous action with a 9/10

probability. This was due to the fact that in the games being learned, frames progressed

very rapidly, and an action performed just once during a certain timestep had minimal

effects on the state. Secondly, an action can be “forced”, meaning that “no action” is

not desired, which was useful particularly in CarRacing-v0. And lastly, the algorithm

can balance actions – this was useful in ViZDoom: Take Cover, because at = [0,0]

and at = [1,1] have the same meaning: “no action”. If these were not balanced among

the other actions (at = [1,0] and at = [0,1]), the random agent would be performing

“no action” more often than the others. After these improvements were made, a more

diverse collection of states were observed during the random rollouts collection phase.

3.1.2 Step 2 - Training Vision: CVAE

The second step was to train Vision with the data collected from the random rollouts

– the frame pixels from each individual state in the case of the pixel based learning

task for CarRacing-v0 and ViZDoom: Take Cover, and the raw state integer tuple for

PommeTeamCompetition-v0. For CarRacing-v0 and ViZDoom: Take Cover, this in-

volves training a Convolutional Variational Autoencoder (CVAE) with the frame pixels

gathered. The idea is to compress each high dimensional state frame st down to a low

dimensional latent vector zt . In the case of the pixel based learning tasks, each frame

is resized to a 64x64x3 image, which equates to a total dimension of 12288 per state

frame. This is further compressed down to a latent zt dimension of 32 for CarRacing-

v0 and 64 for ViZDoom: Take Cover (more details in Chapter 4).

The CVAE was constructed as described by Ha and Schmidhuber (2018), where

the same number and size of convolutional layers were used, with the same activa-

tion functions at each layer, and so on. It was coded into a script named vision.py.

Throughout training of the CVAE, samples were generated to allow a visual check of

how the network was performing. Randomly selected frames were encoded into z vec-

tors, and then decoded back (reconstructed) to frames, and saved as a collage into a

results folder. Examples of these can be seen in Figure 3.2.

After training the CVAE, all states frames from the random rollouts would be pre-
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Algorithm 1 Randomly sampled action algorithm, for Random Rollouts data collec-

tion.
1: function GENERATE ACTION(low, high, prev action, balance no actions,

force actions)

. low: Array of lowest possible values for all actions, where a = index(low)

. high: Array of highest possible values for all actions, where a = index(high)

. prev action: Action at previous timestep t. At t0, prev action←−1

. balance no actions: Balance at .all() = 0 and at .all() = 1 as the same action

. force actions: Do not allow at .all() = 0

. return: Random action at

2: repeat← (randint(0,9) modulo 10)

3: if repeat = 0 and prev action >−1 then
4: return prev action

5: action len← low.length

6: at ←~0

7: while true do
8: for i ∈ range(0,action len) do
9: r← randint(low[i],high[i])

10: if (r modulo action len) = 0 then
11: at [i]← r

12: if balance no actions and at .all() ∈ {0,1} and randint(0,1)=0 then
13: at ←~0

14: continue
15: if f orce action and at .all() ∈ {0,1} then
16: continue
17: break
18: return at

processed by vision.py, which would encode each frame using the trained Vision to

pre-compute the µ and σ for each frame – so the latent could later be sampled as

z∼N (µ,σ). The collection of µ and σ were saved alongside the random rollout dataset

on disk, again using NumPy’s compressed .npz format. This pre-computation allowed

for faster training in Model and Controller down the pipeline.
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(a) Training frames (b) Reconstructed frames

Figure 3.2: CarRacing-v0 Vision samples generated during training of the CVAE.

3.1.3 Step 3 - Training Model: MDN-RNN

At this step in the experimentation pipeline, the MDN-RNN for the Model component

was trained. The goal was to train the MDN-RNN using the data collected from the

random rollouts using teacher forcing, where the inputs are the latent zt and outputs

are zt+1. More specifically, the network was trained using the ordered sequence of

compressed frames for each random rollout (episode) collected in Step 1. The input

was [zt + at ] – the compressed latent zt at timestep t, concatenated with the random

action at taken at timestep t. The output was zt+1, which was simply the next latent

z in the sequence for the rollout. This allowed the RNN to learn a predictive model

– what frames follow in a sequence, and what affect an action has on the upcoming

frame.

The output of the network were the parameters for the mixture density model (the

Gaussian mixture model (GMM) in this case): for each mixture, m, a set of coefficients

α, a set of means µ, and a set of variances σ. The network was trained using the

following negative log likelihood as the loss function (Bishop, 1994):

L =−ln

{
m

∑
i=1

αi(zt)
1√

2πσi(zt)
exp
{
− ‖zt+1−µi(zt)‖2

2σi(zt)

}}
(3.1)

m

∑
i=1

αi(zt) = 1 (3.2)

As the MDN-RNN outputs the GMM parameters α, µ, and σ given [zt +at ] as input,

zt+1 was sampled from the mixtures. A mixture m was chosen with a probability given

the coefficients α, and then zt+1 was sampled as zt+1 ∼ N (µm,σm). To choose the
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mixutre, a weighted random choice can be implemented as shown in Algorithm 2.

Algorithm 2 Algorithm for choosing a mixture given a set of coefficients α.
1: function GET MIXTURE INDEX(coefficients)

. coefficients: Array of coefficient α for each mixture

. returns: Index of mixture selected randomly with probabilities according to

coefficients

2: sum← 0.0

3: r← randuni f orm(0.0,1.0)

4: index← 0

5: for i ∈ range(0,coe f f icients.length) do
6: sum+= coe f f icients[i]

7: if r ≤ sum then
8: index← i

9: break
10: return index

Training the MDN-RNN was built into model.py. The latent z’s were re-sampled

at every epoch using the pre-computed µ and σ from Vision in Step 2 – to prevent

overfitting to specific sampled z’s.

For training the RNN, Truncated Backpropagation Through Time (TBPTT) was

used, and some preliminary experiments were conducted to find an ideal sequence

length at which to perform TBPTT. A sequence length of 128 seemed to give the best

performance. In the case of ViZDoom: Take Cover, the MDN-RNN was made to

output an additional prediction on whether the player had been killed by a fireball,

called the “done” state. Done was added as an additional separate output from the

network along with the GMM parameters, and a Sigmoid cross-entropy loss was added

to the GMM loss (Equation 3.1) during training.

The GMM coefficients α can be modeled in one of two ways. For a pre-selected

number of mixtures m to model a latent z of dimensionality d, one coefficient per

mixture can be chosen. So if there are 5 mixtures (m = 5), then there would be 5 co-

efficients total. Alternatively, the GMM can be setup to have an individual coefficient

for each individual dimension of the latent z, therefore the network could learn m x d

coefficients in total. An illustration of these two setups is provided in Figure 3.3. It

was hypothesized that giving each dimension d for input vector z its own coefficient α

would allow the model to be more flexible, so this method of modeling the GMM was
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chosen.

z ∼
Mixture 1, α1︷ ︸︸ ︷

dim1︸︷︷︸
µ11 σ11

, dim2︸︷︷︸
µ12 σ12

, ..., dimd︸︷︷︸
µ1d σ1d

, ...,

Mixture m, αm︷ ︸︸ ︷
dim1︸︷︷︸

µm1 σm1

, dim2︸︷︷︸
µm2 σm2

, ..., dimd︸︷︷︸
µmd ,σmd

(a) Coefficient per whole mixture.

z ∼
Mixture 1︷ ︸︸ ︷

dim1︸︷︷︸
α11 µ11 σ11

, dim2︸︷︷︸
α12 µ12 σ12

, ..., dimd︸︷︷︸
α1d µ1d σ1d

, ...,

Mixture m︷ ︸︸ ︷
dim1︸︷︷︸

αm1 µm1 σm1

, dim2︸︷︷︸
αm2 µm2 σm2

, ... dimd︸︷︷︸
αmd µmd σmd

(b) Coefficient per individual dim per mixture.

Figure 3.3: Possibilities for setup of Gaussian Mixture Model parameters output by the

MDN-RNN.

When the MDN-RNN was utilized during training of the Controller, it was discov-

ered that the sampling for zt+1 was a bottleneck in speed, as it contained several nested

math-heavy for loops, which can be slow in Python. Several techniques of speeding it

up were explored, and eventually Numba1 was used to compile the code to C++ using

the JIT (just in time) method. The use of Numba mitigated the speed issue.

Similar to training in Vision, samples of how the MDN-RNN was performing were

generated throughout, and saved in a results folder. A sequence of compressed frames

and actions from a saved random rollout were input to the network, and the next pre-

dicted frame was sampled in order and saved as a collage. This provided a visual

spot-check of how the MDN-RNN performed as training progressed.

Furthermore, an option to generate a simulated rollout using the trained MDN-

RNN was built in. The simulated rollout would use an initial compressed frame from a

real rollout collected in Step 1, and perform pre-configured actions in the simulation up

to a number of timesteps. To create a simulation, [zt +at ] were input to the MDN-RNN

to sample zt+1, which was input back into the MDN-RNN with at+1. An illustration

of how a simulated rollout was created is shown in Figure 3.4. The simulated rollout

would be saved as an animated GIF, and was highly useful in testing the robustness

and predictive power of the trained MDN-RNN.

The implementation of the MDN created for this research was attempted on a toy

task, as a proof of concept and to ensure it was working correctly. Details of this toy

task can be found in Appendix A.1.

1https://numba.pydata.org/
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Figure 3.4: Illustration of how a simulated rollout is created for testing the MDN-RNN or

training the controller.

3.1.4 Step 4 - Training Controller: CMA-ES

The Controller uses Vision to encode frames from an environment into a compressed

latent z, Model to get the prediction for the next state, and Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) to train its own set of parameters, W , to perform

optimal actions in the environment to maximize the reward.

Everything to do with training the Controller was built into controller.py. At the

core of it, an implementation of (µ/µI,W ,λ)-CMA-ES algorithm was created in Python

using the equations and pseudo-code published by Hansen (2016). (µ/µI,W ,λ)-CMA-

ES was tested on a toy task to ensure it was working correctly. Details of this toy task

can be found in Appendix A.2. For brevity, (µ/µI,W ,λ)-CMA-ES is simply referred to

as CMA-ES from here on in this thesis.

With CMA-ES, an initial seed parameter was sampled from N (0, I), a “multivari-

ate normal distribution with zero mean and unity covariance matrix” (Hansen, 2016).

Mutations to Controller parameters W were created according to covariance matrix C

from N (m,C), where C was adapted as generations progressed. In controller.py, a

core CMA-ES loop was made responsible for creating a population of these mutations

(λ mutations in total), and launching processes to test these mutations in parallel. Each

sub-process would test the mutation in the environment (or in a simulated environ-

ment), with each mutation tested for a number of trials, and return the mean cumula-

tive rewards achieved by the mutation across all trials. The core CMA-ES loop would

then adjust the master copy of the Controller parameters W towards the mean of the

mutations achieving the top 25% of rewards in that generation.



3.1. Experimentation Framework 23

When testing a mutation m at generation g, to get an action at at timestep t,

the action was calculated using the parameters of the Controller Wg,m as at = Wg,m ·
[some input]. The input was typically the compressed frame zt (from the environment

or simulation), concatenated with the hidden state ht from the recurrent network in

the MDN-RNN. More details for the parameters W , inputs chosen, and methods for

calculating the action are provided in Experiments in Chapter 4 as they varied per en-

vironment.

Each mutation was tested multiple times over a number of trials, and the average

cumulative reward was passed back to the core CMA-ES loop. This was done to be

certain how the mutation performed, due to the stochastic nature of the environments.

Otherwise it may be that the mutation got very lucky over a single run and achieved

a high cumulative reward, but was not actually fit to perform well generally. This

allowed the Controller to learn robust strategies.

The fitness test procedure in controller.py for Controller parameter mutations was

set up to support two types of fitness tests: using the live environment, or using a simu-

lation of the environment generated with the MDN-RNN (Figure 3.4). When evolving

the Controller parameters in a simulated rollout, an initial frame was used from a ran-

domly selected rollout saved to disk in Step 1. This compressed frame z0 was input

to the MDN-RNN model along with a first action a0 calculated using the Controller

parameters. As the MDN-RNN was trained to produce the mixture parameters for zt+1

given input [zt +at ], each output zt+1 (along with other information such as the hidden

state ht from the MDN-RNN) was used to calculate the next at+1 using the Controller

parameters Wg,m. This allowed for a full simulation of the environment, without ever

using the real environment. The simulation would be terminated when the “done” flag

output by the MDN-RNN reached a certain threshold.

As the Controller evolved, snapshots were saved to disk every few generations

(configurable through command line arguments), to ensure no data was lost in case

of an issue or glitch. This snapshot included the current Controller parameters W ,

the covariance matrix C and other ancillary scalars and matrices used for CMA-ES,

among other information such as generation number and past rewards. The snapshot

was saved in the NumPy compressed .npz format, and controller.py would automat-

ically resume from the latest snapshot (unless told otherwise through command line

arguments), which also allowed seamlessly restarting Controller training on different

servers.
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Using CuPy2, a GPU-optimized numerical library similar to NumPy, GPU support

(if available) was also built into controller.py to speed up training. This allowed for

faster action calculation with the dot product of the Controller’s parameters W with

inputs from the environment, along with faster processing of the Vision and Model

neural networks used in testing mutations in the environment.

3.1.4.1 Distributed Evolution

A strong selling point of Evolution Strategies is that they are very parallelizable (Sal-

imans et al., 2017). As testing each mutation to Controller parameters Wg,m in a gen-

eration can be costly (computation heavy and slow, particularly for CarRacing-v0),

parallelization of the Controller’s evolution was sought. A simple strategy to paral-

lelize was created to test each parameter mutation from the whole population in a sub-

process of its own. The number of sub-processes spawned were equal to the number

of CPU cores available on the computer, unless specified otherwise through command

line arguments. This allowed each mutation to be tested in parallel.

Alternatively, it was conceived that multiple machines, or an entire compute cluster,

could be used to test each mutation from the entire population of λ mutations. As each

mutation is tested over a number of trials, and if mapping each trial to a CPU core,

a maximum parallel benefit could be achieved using λ ∗ trials CPU cores in total.

For example, for λ = 64 and trials = 16, a maximum benefit could be achieved with

64∗16 = 1024 total CPU cores spread across a cluster of machines.

To that effect, a simple client/server architecture, to perform distributed CMA-ES

over a cluster of computers, was devised and built into controller.py. A single machine

would be assigned as a Dispatcher, and would perform the core loop of CMA-ES to

create and distribute mutations and receive results (mean cumulative rewards in the

environment being tested), and evolve the master Controller parameters W . Workers

would receive mutations from the dispatcher, test them in the environment, and re-

turn the mean cumulative reward over a number of trials. The mutations and results

were passed back and forth over TCP/IP, using NumPy compressed .npz format. An

illustration of this distributed evolution architecture can be seen in Figure 3.5.

For this to work, the same technology stack was setup on each node–(a) Git to

receive updates for the codebase for this research, (b) Conda to setup the same Python

environment, and (c) OpenAI Gym. The dispatcher itself was also made a worker, to

2https://cupy.chainer.org/
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Figure 3.5: Distributed CMA-ES cluster. Dispatcher runs core CMA-ES algorithm, and

passes mutations to all workers over TCP/IP.

make use of its own CPUs as well. A cluster of 12 servers with 40-48 CPUs per server

was used with distributed evolution architecture, and orders of magnitude speedup in

wall-clock time was observed for training of the Controller.

3.1.4.2 Curriculum Learning

It was observed that Controller evolution was slow if full rollouts were used for testing

a mutation to Controller parameters W for every single generation. For example, for

CarRacing-v0, the agent would spend the majority of its time pointlessly in the grass, in

early generations of evolution. This added to wall-clock time for Controller training.

It was hypothesized that the Controller could benefit from shorter rollouts early on,

and progressively build up to longer episodes once it learned to maximize its reward

in shorter episodes. This would allow it to learn a shorter (perhaps easier) task first,

before moving on to mastering longer tasks. And consequently, it would also speedup

wall-clock time of training as shorter rollouts would be used early on.

Thus, controller.py was built to optionally apply an elementary and simple form
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of curriculum learning for the task being learned. An initial number of maximum

timesteps (max timesteps) could be configured, along with a step size (step size). For

every generation of evolution, the past mean cumulative reward returned from all mu-

tations was logged – particularly, the highest one only (if a future generation had a

lower reward, it was ignored). And max timesteps was increased by step size strictly

only if the mean cumulative reward increased from the previous generation. Each trial

for a mutation would run up to max timesteps and terminate, returning the cumulative

rewards received up until that point.

3.1.4.3 PommeTeamCompetition-v0 adaptations

As PommeTeamCompetition-v0 presented a very different task than CarRacing-v0 and

ViZDoom: Take Cover, the Controller had to be adapted to handle the differences. The

team competition involves teams of two players, and hence a pair of two Controller

parameters had to be created – one for each player. Each of the parameters had their

own copy of the ancillary CMA-ES scalars and vectors, and evolved “independently”,

but both were tested as a team in the live environment. For trials, each of the muta-

tions (from two populations) to each of the two parameters were paired, their actions

calculated independently, but performed in the same instance of the game. Their cu-

mulative rewards were collected and reported back to the core CMA-ES loop, which

then would use the paired parameter mutations that achieved the top 25% of rewards

in each generation, to adjust the master copies of the pair towards the mean of the

winning mutations.

Each individual agent in the team can be placed in any one of four corners (with

the condition that the partner is in the kitty-corner diagonally across the square board).

Thus, when running a trail, the locations of the agents were randomized, within the

team, and on the board, so an agent would not overfit to being exactly in the same

corner always.

The Controller was adapted to use self-play when running a trial with a pair of

mutations, where the opposing team was an older “frozen” version of the pair of pa-

rameters. The frozen pair was updated every few generations (treated as a hyperpa-

rameter). Thus the complexity of the Controller codebase increased even more, having

to track two individual pairs of parameters. A version of the environment trial was

also made to use a deterministic team of agents as the opposing team, instead of using

self-play. The PommeTeamCompetition-v0 codebase includes an agent called Sim-

pleAgent, which turns out to be not very simple – it contains ∼ 500 lines of code filled
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with logic, rules, and even a version of Djikstra’s graph search algorithm3.

3.1.5 Step 5 - Testing

The final step in the experimentation framework was to test the trained Controller in

the real environment over a number of rollouts, to get the mean reward (along with

the standard deviation) it was able to achieve in the environment. For that purpose, a

test.py script was created, which would run the Controller through the environment.

test.py used functions from controller.py to calculate the action at every timestep.

The script was configured to run in parallel, using a number of subprocesses equal

to the CPU cores on the system (unless specified otherwise through command line

arguments). An optional command line argument allowed recording each rollout as an

animated GIF and saving it to disk. After evaluation, the script reported back the mean

cumulative reward and standard deviation over all rollouts, along with the cumulative

rewards received per episode. These results were also recorded to disk in a NumPy

compressed .npz format.

This setup made it easy to test a trained Controller and even observe visually how

the agent performed in the real environment4.

3.2 Differentiable Neural Computer

As the primary objective of this research was to investigate the use of the Differentiable

Neural Computer (DNC) to learn a predictive, probabilistic model of an environment,

an implementation of the DNC in Chainer that could plug in neatly with the codebase

for this research was necessary. Furthermore, it was thought to be beneficial to test

the implementation and get a “feel” of the DNC by testing it in simpler toy tasks first,

and observe how it behaves and performs in comparison to traditional LSTM. Thus,

a thorough effort was undertaken on implementing and testing the DNC separately

before using it in this research.

3https://github.com/MultiAgentLearning/playground/blob/master/pommerman/agents/simple agent.py
4An example recorded rollout of a trained Controller in CarRacing-v0 can be seen at:

https://raw.githubusercontent.com/AdeelMufti/WorldModels/master/asset/CarRacing-v0 rollout.gif
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3.2.1 Implementation

There was an implementation of a DNC coded in Chainer, available publicly on GitHub

by a user named yos1up5. This codebase for the DNC was useful as a starting point,

particularly given the care the author took to keep it simple and match the names of

variables and operations to equations laid out in the DNC publication by Graves et al.

(2016). However, there were a couple of problems with this implementation, with the

main one being speed of training in wall-clock time.

The primary reason for the slowness of yos1up’s implementation of the DNC was

the use of nested for loops in Python to interface with NumPy in non-vectorized ways,

which is a well-known cause for drastic slowdown in the execution of code. NumPy

vectorization means that operations on NumPy arrays are done through compiled C

code containing for loops. For example, a vectorized NumPy dot product offers a 70x

speedup over a Python for loop version (van der Walt et al., 2011).

With some testing, it was estimated if this DNC implementation was plugged into

the Model component in the experimentation framework, it would take 52 days per

single epoch of training, where the approach of Ha and Schmidhuber (2018) calls for

20 epochs. So training a full Model would be completely unfeasible. Therefore, to get

around this speed issue, an optimized implementation was created by using yos1up’s

code as a starting point, and baseline. A final optimized implementation ultimately

achieved a 50x speedup over yos1up’s baseline.

3.2.2 Optimization

Cython and Numba can be used to translate Python code to C/C++ and compiled to run

much faster. Already this research project had employed the use of Numba to speedup

sampling from the MDN-RNN. So as a starting point, parts of the DNC code, partic-

ularly the for loops in the inner computation mechanism, were (1) ported to Cython

or (2) decorated with Numba JIT (after some modifications). But only a moderate

speedup was observed, likely due to the fact that the compiled for loops were still call-

ing further for loops (internal to the NumPy library) when manipulating the NumPy

arrays. So other approaches were sought.

Alternatively, Rae et al. (2016) lay out an approach for implementing a “Sparse

Differentiable Neural Computer”. It uses Compressed Sparse Row (CSR) and Com-

pressed Sparse Column (CSC) formats for some of the DNC’s internal matrices (for

5https://github.com/yos1up/DNC
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example the temporal memory linkage matrix which happens to be sparse), along with

a sparse memory management scheme that tracks memory usage. Rae et al. (2016)

observed a 400x speedup using a memory matrix with 2,000 slots. This approach was

investigated but not pursued because the SciPy (for CPU) and CuPy (for GPU) CSR

and CSC matrix formats did not plug into Chainer.

For writing optimized NumPy code in Python, van der Walt et al. (2011) suggest

“vectorizing calculations, avoiding copying data in memory, and minimizing opera-

tion counts”. So this approach was closely followed. Ultimately what led to the most

significant speedup was to vectorize the code and avoid any for loops in the inner com-

putation mechanism of the DNC altogether. This was achieved with some careful and

creative manipulation of NumPy arrays and the necessary mathematical operations, us-

ing only vectorized NumPy functions. Essentially, major parts of the implementation

had to be recreated and tested to support these changes.

Figure 3.6: Sparse link matrix optimization benefits in wall-clock time for training the

DNC.

Graves et al. (2016) point out a way to use a sparse link matrix (which connects

related items stored in memory together), rather than a dense matrix. For this, a

CSR/CSC matrix was not necessary, and benefits could be gained just through NumPy

slicing of the matrix to ignore the sparse bits. With the proposed changes, computation

costs related to the link matrix could be reduced from O(n2) to O(n logn), without sac-

rificing performance in error/accuracy. This improvement was implemented, and sped
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up the implementation a bit. It is predicted that for large memory sizes and long train-

ing requirements, this improvement can make a significant dent in wall-clock time

savings. A graph of the speedup achieved can be seen in Figure 3.6, where a small

memory size was used for testing on a toy task.

Figure 3.7: CPU vs GPU benefits in wall-clock time of training the DNC as memory size

increases.

GPU acceleration can speedup neural network training by orders of magnitude. A

major reason for this speedup is that GPUs can perform massively parallel matrix com-

putations especially on batches of matrices together, which is common in mini-batch

stochastic gradient descent training of neural networks. However, the DNC can only

be trained with a batch size of one (the reason follows below). Still, it was predicted

that performing many of the matrix operations for a single input while training the

DNC could benefit from GPU acceleration. Fortunately, CuPy (Chainer’s GPU accel-

erated numerical library) is meant to be a drop-in replacement for NumPy, so wherever

NumPy was used, CuPy could simply be swapped in. Though this did not work out

exactly perfectly; some changes still needed to be made. In the end, GPU support did

not give any benefit over CPU for smaller memory matrix sizes for the DNC (in fact,

it degraded performance) – but it did offer a significant speedup as the memory size

increased. A graph of the speedup achieved with GPU acceleration as memory size

increased, can be seen in Figure 3.7.

The reason the DNC needs to be trained with a mini-batch size of one is because for
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every single input passed through the network to calculate the gradient during training,

the internal state of the DNC needs to be manipulated. Particularly, the controller

inputs the external input, and its own data rt (where r0 = 0) read from the external

memory at the end of the previous timestep (i.e. the previous input in a sequence).

Still, mini-batch processing was attempted by meticulously implementing it – changes

to every single matrix operation in the DNC were required. Though a major wall-

clock speedup was achieved with larger batch sizes (2, 8, 16, 32), especially with GPU

acceleration, a major degradation in performance in error/accuracy were also observed.

This is likely because the data contained at timestep 1 in r1 would not be representative

of the actual timestep in the input sequence as a batch of inputs were processed in the

previous pass. So this approach was abandoned.

With all the optimizations to the DNC (the most significant one being vectorized

NumPy matrix operations), an average speedup of around 50x was observed on some

toy tasks, and this would allow training the MDN-RNN a lot more feasible for these

experiments. Details of the toy tasks used to test the final optimized implementation

can be found in Appendix A.3.

3.2.3 Integration With Model

Integrating the DNC in the Model component was straightforward. Where the tradi-

tional LSTM was previously used in hidden layer for the MDN-RNN, it was simply

switched to the DNC implementation, which was possible because the DNC was ex-

tended from the Chainer Chain class. Hence, DNC support was built in to the exper-

imentation framework, and the MDN could be toggled to switch between LSTM and

DNC as its recurrent layer. This toggle could be done from command line arguments

from which the hyperparameters (such as memory size) for the DNC could also be

provided. model.py, controller.py, and test.py were all adapted to be able to switch

between MDN-LSTM and MDN-DNC.

3.3 Challenges and Difficulties

There were a number of challenges and difficulties faced when creating these imple-

mentations and carrying out the experiments, some of which are described below.
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3.3.1 Large Datasets

10,000 random rollouts were collected by a random agent and saved to disk. For ViZ-

Doom: Take Cover, and PommeTeamCompetition-v0, each rollout had ∼ 500 states,

and 1,000 states in the case of CarRacing-v0. Choosing how to store this data was

an important decision for ease of use, speed, and disk space. Ultimately NumPy’s

compressed .npz format was chosen.

For training the Vision and Model components, the data needed to be loaded into

memory. However, a major obstacle was that the computer on which training was being

done (even AWS instances with large RAM) would run out of memory if attempting to

load all 10,000 rollouts at once into memory from disk. The problem was resolved by

implementing a custom data loader class used by vision.py and model.py that allowed

loading data in batches instead. Chainer and the code to train the CVAE and MDN-

RNN would be agnostic of the batched loading, and would simply iterate through

the data in the custom data loader, which would handle loading from disk in chunks.

The data loader had to maintain its own internal state, and carefully keep the vast

amount of data “aligned” as well – when training Model, it was paramount to have

each rollout’s compressed frames ordered in a sequence, and matched with the right

action, which was made difficult by the fact that the 10,000 rollouts would be shuffled

during training. Implementing all this was a challenging task.

Loading the data from disk was also very slow, as it needed to be preprocessed

and stacked into arrays. So the custom data loader was parallelized, by spawning

subprocesses to do the loading and computation.

3.3.2 Controller Action Calculation

In the World Models approach of Ha and Schmidhuber (2018), actions can be calcu-

lated in the following ways:

1. at = tanh(W · [zt +ht ]+b)

2. at = tanh(W · [zt +ht + ct ])

where W (weights) and b (bias) are the parameters of the controller, zt is the com-

pressed latent vector received from the environment or simulated environment, and ht

and ct are the hidden and cell states of the MDN-RNN. In method (1), there is a scalar

output for each individual action. For method (2), a singular scalar reduced to (−1,1)

is output which is treated as a number falling in the range [−1,1], which is divided into
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parts equal to the number of actions, to get the ultimate action. For example if there

are 3 actions, at can be calculated as:

1. at = 0 :−1 < tanh(W · [zt +ht + ct ])<=−0.33

2. at = 1 :−0.33 < tanh(W · [zt +ht + ct ])<= 0.33

3. at = 2 : 0.33 < tanh(W · [zt +ht + ct ])<= 1

PommeTeamCompetition-v0 uses 6 actions, whereas CarRacing-v0 and ViZDoom:

Take Cover both have 3, which presented a problem with these methods of action

calculation. With #1, there were too many parameters in the Controller for CMA-ES,

which slowed it down. With #2, empirically W · [zt +ht +ct ] produced values far in the

negative, or far in the positive, and rarely close to 0. This was a problem because after

tanh(), values were close to −1 or 1, which caused the controller to only perform two

actions. For ViZDoom: Take cover, this was not an issue because there were really

only two actions (go left or go right), the third action was “no action” – so the problem

was modeled as when closer to -1, go left, when closer to +1, go right.

Thus for Pommerman, a number of approaches for action calculation were at-

tempted, including using sigmoid with adjusted slope (Ivanikovas et al., 2009) instead

of tanh, or using sine as an activation function. Though in the end, approach #1 was

used with the trade-off that training the Controller was slower in wall-clock time.

3.3.3 Technical

There were some purely technical issues that had to be overcome.

1. The ViZDoom wrapper for OpenAI Gym had been deprecated and did not plug

in with the latest OpenAI Gym version6. Hence, ViZDoom has to be compiled

on its own separately, and a custom wrapper was created just for this research.

2. There was a bug in CarRacing-v0 render code which caused pixels not to get ren-

dered when not in human-mode. This bug was tracked down and a workaround

was created7.

6https://github.com/ppaquette/gym-doom/
7The workaround was submitted to: https://github.com/openai/gym/issues/976#issuecomment-

395486438
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3. ViZDoom and some related libraries would not compile on the University of

Edinburgh Informatics Scientific Linux environment, due to other missing li-

braries and packages. Without root access, nothing could be done. Rather than

chase down the right person who potentially may not allow these libraries to be

installed on the compute and GPU clusters anyway, being pressed for time, a

Virtual Machine of Scientific Linux was created locally. The point was just to

be able to compile the libraries and ViZDoom, and copy them to the Informatics

servers. The C++ code of the libraries had to be modified slightly so they would

work out of a relative path rather than absolute path (which would require them

to be placed in folders with root access only).

3.4 Tools and Technical Setup

Python was chosen as the programming language to create the implementations. This

is because Python is widely used and supported in the Machine Learning / Artificial

Intelligence research community. There are several optimized Deep Learning frame-

works available for Python. NumPy, a popular fundamental package for numeric com-

puting, is built for Python. And in Python it is easy to explore new ideas and code

prototypes quickly given its minimal syntax and coding overhead.

Chainer was chosen as the Deep Learning framework to implement and conduct

this work. The primary reason for this choice was recommendation from others in

the scientific community. According to Chainer’s website8, Chainer is a “powerful,

flexible, and intuitive framework for neural networks”, and “supports various network

architectures including feed-forward nets, convnets, recurrent nets and recursive nets.”

PyCharm is a powerful Integrated Development Environment (IDE) for Python,

and was exclusively used for prototyping and development in Python. It has many

features that make programming easier, such as: code completion hints, seamless ver-

sion control integration, code organization, and more. BitBucket offers free Git (a

code version control system) repository hosting, and was used extensively through the

project.

MSc Informatics students at the University of Edinburgh have access to a GPU

cluster, and a compute cluster. The GPU cluster consists of around 200 NVidia 1060

Ti GPUs. And the compute cluster, part of the Extreme Computing course at the

University of Edinburgh, consists of 12 servers with 40 or 48 Intel Xeon E5-2650

8https://chainer.org/
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CPUs on each machine. When either of these resources was not available, paid cloud

computing services from Amazon Web Services (AWS) were used – particularly, the

c5.xxx instances for CPU compute, and g4.xxx instances for GPU compute.

To facilitate experimentation, a series of shell scripts were created for various tasks

such as copying code to servers, copying data and results to and from the servers,

copying data between servers, and so on. This made an optimized pipeline to quickly

execute experiments.

While there exist tools to organize and log experiments, such as Sacred, experi-

ments were organized and logged in a simple text document instead. Outputs of the

training logs, and the results themselves (usually trained models) from each experiment

were kept organized in folders.





Chapter 4

Experiments

This chapter covers the details of the experiments that were carried out for this re-

search. Since all experiments were based on a particular environment, the chapter is

broken down into sections for each environment.

As the objective of the research was to investigate the benefits of an external

memory augmented neural network, particularly the Differentiable Neural Computer

(DNC), for each environment two categories of experiments were conducted:

1. MDN-LSTM: The experimentation framework defined in Chapter 3 using Long

Short Term Memory (LSTM) as the recurrent layer for the Mixture Density Net-

work (MDN) in the Model component. These would form a baseline for com-

parison to what improvements were offered by the MDN-DNC.

2. MDN-DNC: Instead of LSTM, this set of experiments used the DNC as the

recurrent layer for the MDN in the Model component.

Note that in some cases multiple experiments had to be carried out to fine-tune

certain aspects of a component, and are alluded to in the Results chapter but omitted

here for the sake of brevity. This was particularly true for PommeTeamCompetition-

v0.

4.1 CarRacing-v0

4.1.1 MDN-LSTM

4.1.1.1 1. Collect Random Rollouts

37
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Experiment Tag: [cr0 / mdn-lstm / random rollouts]

Using the random action policy defined in Algorithm 1, 10,000 random rollouts were

collected. For action sampling, force actions=true was used to bias the car to move to

collect a variety of scenarios. The frames were resized to 64x64x3 and saved to disk,

along with the actions and rewards, in NumPy compressed .npz format. The rollouts

were collected on a server containing a total of 48 Intel Xeon E5-2650 CPU cores, and

hence 48 parallel subprocesses were spawned.

4.1.1.2 2. Train Vision

Experiment Tag: [cr0 / mdn-lstm / vision]

The CVAE in Vision was trained using the settings and hyperparameters defined in

Table 4.1. Training was done using a GPU. The data loader shuffled all frames and

loaded data into memory in batches of 200 rollouts.

Setting Value

Epochs 1

Latent dim z ∈ R32

Mini-batch size 100

Optimizer Adam, lr=0.001

Table 4.1: [cr0 / mdn-lstm / vision] settings.

4.1.1.3 3. Train Model

Experiment Tag: [cr0 / mdn-lstm / model]

The MDN-LSTM in Model was trained using the settings and hyperparameters defined

in Table 4.2. Training was done using a GPU. The data loader shuffled all 10,000

rollouts per epoch, but preserved the sequence of latent z’s and actions per individual

rollout. Data was loaded into memory in batches of 1,000 rollouts.

4.1.1.4 4. Train Controller

Experiment Tag: [cr0 / mdn-lstm / controller]

The Controller was trained using CMA-ES run across a distributed compute cluster

(Figure 3.5) consisting of 12 machines with 40-48 Intel Xeon E5-2650 CPU cores per
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Setting Value

Epochs 20

LSTM hidden dim 256

Gaussian mixtures 5

TBPTT sequence length 128

Optimizer Adam, lr=0.001

Predict done False

Table 4.2: [cr0 / mdn-lstm / model] settings.

machine (a total of 520 CPU cores). Ideally if each machine had a GPU, it could be

utilized when processing Vision and Model, and calculating the actions – but no GPUs

were available on this compute cluster. The controller was trained using the settings

and hyperparameters defined in Table 4.3.

Setting Value

CMA-ES population size λ = 64

CMA-ES fittest genes µ = 1/4

CMA-ES target fitness Mean cumulative reward of 900

Trials per mutation 16

Number of actions 3

Action dim a ∈ R3

Parameters dim W ∈ R864, b ∈ Ra (867 in total)

Action calculation tanh(W · [zt +ht ]+b)

Curriculum initial max timesteps=50, step=5

MDN temperature* τ = 1.0

Environment type OpenAI Gym

Table 4.3: [cr0 / mdn-lstm / controller] settings.

*Ha and Schmidhuber (2018) use temperature (τ) when sampling from the MDN-RNN to increase

or decrease uncertainty. The temperature adjusts the GMM coefficients to make the dominant mixture

most probable with τ < 1.0, or make all mixtures more equally probable with τ > 1.0. And the standard

deviation is narrowed with τ < 1.0, and widened with τ > 1.0.

4.1.1.5 5. Test
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Experiment Tag: [cr0 / mdn-lstm / test]

The final step was to test how well the trained agent performed in the real environ-

ment. This entailed putting the trained Vision, Model, and Controller through the

environment and logging the cumulative rewards for each trial, over 100 trials – the

final mean and standard deviation of all cumulative rewards over all trials would serve

as a measure of how well the trained agent was performing in general.

The mean cumulative rewards achieved by the agent could be compared against

those received by a random agent. A random agent was set up as follows. At every

timestep in the environment, the agent calculates its action as at = tanh(W · [zt +ht ]+

b), using W and b parameters evolved through CMA-ES. To test how a random agent

would perform, the Controller’s pararameters W and b were initiated from a random

unit normal distribution, thus only meaningless actions would be calculated at any

timestep. The random agent was also run over 100 trails in the environment, and the

mean and standard deviation over all cumulative rewards were recorded for compari-

son. Note that while a random Controller was used, the trained Vision and Model were

used.

4.1.2 MDN-DNC

Experiments with MDN-DNC were started for CarRacing-v0, but due to limited time

available for conducting this research, and slow training of the DNC, they were halted.

It was guessed that maximum benefit and ideal testing for the predictive modeling

capabilities of the MDN-DNC would be gained in a simulated training environment

generated by the MDN-DNC (possible using model.py as described in Section 3.1.3

and illustrated in Figure 3.4). Since experiments using simulated training were to be

done for Doom, that is where the MDN-DNC experimentation efforts were focused.

4.2 ViZDoom: Take Cover

4.2.1 MDN-LSTM

4.2.1.1 1. Collect Random Rollouts

Experiment Tag: [dtc / mdn-lstm / random rollouts]

Using the random action policy defined in Algorithm 1, 10,000 random rollouts were

collected. For action sampling, balance no actions=true was used to ensure that “no
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action” ([0,0] and [1,1]) were balanced against taking an action at a probability of

1/3. The frames were resized to 64x64x3 and saved to disk, along with the actions

and rewards, in NumPy compressed .npz format. The rollouts were collected on a

server containing a total of 48 Intel Xeon E5-2650 CPU cores, and hence 48 parallel

subprocesses were spawned.

4.2.1.2 2. Train Vision

Experiment Tag: [dtc / mdn-lstm / vision]

The CVAE in Vision was trained using the settings and hyperparameters defined in

Table 4.4. Training was done using a GPU. The data loader shuffled all frames and

loaded data into memory in batches of 200 rollouts.

Setting Value

Epochs 1

Latent dim z ∈ R64

Mini-batch size 100

Optimizer Adam, lr=0.001

Table 4.4: [dtc / mdn-lstm / vision] settings.

4.2.1.3 3. Train Model

Experiment Tag: [dtc / mdn-lstm / model]

The MDN-LSTM in Model was trained using the settings and hyperparameters defined

in Table 4.5. Training was done using a GPU. The data loader shuffled all 10,000

rollouts per epoch, but preserved the sequence of latent z’s and actions per individual

rollout. Data was loaded into memory in batches of 1,000 rollouts.

At the end of training, animated GIFs were generated in a simulation with pre-

defined deterministic actions, to get a visual test of how the model was performing

(whether it was responsive to the actions, whether it had learned the dynamics of the

environment, and so on).

4.2.1.4 4. Train Controller

Experiment Tag: [dtc / mdn-lstm / controller]
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Setting Value

Epochs 20

LSTM hidden dim 512

Gaussian mixtures 5

TBPTT sequence length 128

Optimizer Adam, lr=0.001

Predict done True

Table 4.5: [dtc / mdn-lstm / model] settings.

The Controller was trained using CMA-ES run across a distributed compute cluster

(Figure 3.5) consisting of 12 machines with 40-48 Intel Xeon E5-2650 CPU cores per

machine (a total of 520 CPU cores). Ideally if each machine had a GPU, it could be

utilized when processing Vision and Model, and calculating the actions – but no GPUs

were available on this compute cluster. The Controller was trained using the settings

and hyperparameters defined in Table 4.6.

Training was significantly different from [cr0 / mdn-lstm / controller] because it

was performed using simulations of the environment instead of in the real environment

itself. In the simulation, a +1 reward was given for every timestep alive. The game

was considered done (agent killed) when the additional done flag output by the MDN-

LSTM reached a certain threshold. To prevent a run-away simulation that kept going

forever, the simulation was terminated after a certain number of timesteps.

Through training generations, animated GIFs were generated in a simulation using

actions calculated by the trained Controller. This allowed visually observing what the

controller had learned to do in the simulated environment, which was useful down the

line.

4.2.1.5 5. Test

Experiment Tag: [dtc / mdn-lstm / test]

The final step was to test how well the trained agent performed in the real environment.

This entailed putting the trained Vision, Model, and Controller through the environ-

ment and logging the cumulative rewards for each trial, over 100 trials – the final mean

and standard deviation of all cumulative rewards over all trials would serve as a mea-

sure of how well the trained agent was performing in general. The mean cumulative

rewards achieved by the agent could be compared against those received by a random
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Setting Value

CMA-ES population size λ = 64

CMA-ES fittest genes µ = 1/4

CMA-ES target fitness Mean cumulative reward of 2100

Trials per mutation 16

Number of actions 3

Action dim a ∈ R1

Parameters dim W ∈ R1088, no bias

Action calculation tanh(W · [zt +ht + ct ]) (Section 3.3.2)

Curriculum initial max timesteps=500, step=10

MDN temperature τ = 1.15*
Environment type Simulation

Simulation max length 2100

Simulation done threshold 0.5

Initial z noise z+= N (0,0.5)*

Table 4.6: [dtc / mdn-lstm / controller] settings. *Multiple values were tried, but ultimately the

value provided was chosen. More details in Results, Chapter 5.

agent. The random agent’s mean cumulative rewards were collected as described in

Section 4.1.1.5.

Since the Controller was being trained in simulations of the environment gener-

ated by the MDN, an individual 100 trial test was performed with the Controller as it

evolved over the generations, to see how it performed in the real environment. The test

was done at every 5th generation and mean cumulative rewards and standard deviations

were logged.

4.2.2 MDN-DNC

4.2.2.1 1. Collect Random Rollouts

The same dataset of 10,000 random rollouts from [dtc / mdn-lstm / random rollouts]

was used for this set of experiments.
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4.2.2.2 2. Train Vision

As the primary reason for conducting these experiments was to test how Model and

Controller performed when augmented with the DNC, it was not necessary to retrain

the Vision, and more useful to keep it consistent. Hence the same trained Vision from

[dtc / mdn-lstm / vision] was used.

4.2.2.3 3. Train Model

Experiment Tag: [dtc / mdn-dnc / model]

The MDN-DNC in Model was trained using the settings and hyperparameters defined

in Table 4.7. Training was done using a GPU. The data loader shuffled all 10,000

rollouts per epoch, but preserved the sequence of latent z’s and actions per individual

rollout. Data was loaded into memory in batches of 1,000 rollouts.

While training was planned for 20 epochs, it was stopped early due to time con-

straints given the fact that the DNC is slower to train for reasons detailed in Sec-

tion 3.2.2.

Setting Value

Epochs 20

LSTM hidden dim* 512

Gaussian mixtures 5

TBPTT sequence length 128

Optimizer Adam, lr=0.0001

Predict done True

DNC memory slots N = 256**
DNC memory width W = 64**
DNC read head R = 4**

Table 4.7: [dtc / mdn-dnc / model] settings. *The DNC’s controller consists of an LSTM. **These

were chosen as they were used in the majority of experiments by Graves et al. (2016).

At the end of training, animated GIFs were generated in a simulation with prede-

fined deterministic actions, to get a visual test of how the model was performing.

4.2.2.4 4. Train Controller

Experiment Tag: [dtc / mdn-dnc / controller]
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Training the controller was mostly the same as done for [dtc / mdn-lstm / controller].

The major difference was that instead of using a MDN-LSTM, a MDN-DNC was used

for the Model component. Another difference was that instead of directly injecting

Gaussian noise into the initial frame z used for the simulation (z+ = N (0,0.5)), the

MDN temperature was set to τ = 4. And similar to the other experiment, animated

GIFs were generated in a simulation using actions calculated by the Controller as it

evolved, to visually observe what it had learned to do in the simulations.

4.2.2.5 5. Test

Experiment Tag: [dtc / mdn-dnc / test]

Tests over 100 trials were performed in the real environment, at every 5th generation

of Controller evolution, as done for [dtc / mdn-lstm / test].

4.3 PommeTeamCompetition-v0

4.3.1 MDN-LSTM

PommeTeamCompetition-v0 was significantly different than the other tasks – state was

presented as a tuple of integers rather than pixels, and the task involves multi-agent

learning. Thus, educated guesses and some trial and error with preliminary experi-

ments had to be made to design these experiments.

4.3.1.1 1. Collect Random Rollouts

Experiment Tag: [ptc / mdn-lstm / random rollouts]

Using the random action policy defined in Algorithm 1, 10,000 random rollouts were

collected. PommeTeamCompetition-v0 returns 4 full states, with 1 from the partially

observed perspective of each of the 4 players. Thus, in fact, each individual rollout

can be treated as 4 rollouts, and the 10,000 rollouts can be divided logically as 40,000

individual rollouts.

The states were stored on disk using Python Pickle (an object serialization method),

compressed with gzip. The rollouts were collected on a server containing a total of 48

Intel Xeon E5-2650 CPU cores, and hence 48 parallel subprocesses were spawned.
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4.3.1.2 2. Train Vision

The custom data loader had to be adapted to convert the state tuple consisting of sets

of integers into a “frame” – all the integers in the tuple flattened and concatenated

into a single integer vector. Each frame had the dimensionality R375, which was much

smaller than the other tasks where every frame was of dimensionality R12288 (64x64x3

image).

Since the frames for this game were represented not as pixels, a Convolutional VAE

was not appropriate to use in Vision. A simpler VAE and even a traditional autoencoder

(AE) could be used. The choice a trying a non-variational autoencoder was based on

the fact that the state space was so small for this task (375 vs 12288), small variations in

the state could potentially have more dramatic effects compared to a few pixels being

off otherwise.

Thus, two versions of Vision were trained to use with experiments further down

the experimentation pipeline.

Experiment Tag: [ptc / mdn-lstm / vision-vae]

Several variations of a VAE architecture were attempted in preliminary experiments,

and ultimately the one represented in Table 4.8 was used.

Setting Value

Epochs 10

Latent dim z ∈ R16

Mini-batch size 100

Optimizer Adam, lr=0.001

Hidden layers 1

Hidden dim 512

Table 4.8: [ptc / mdn-lstm / vision-vae] settings.

Experiment Tag: [ptc / mdn-lstm / vision-ae]

Several variations of an AE architecture were attempted in preliminary experiments,

and ultimately the one represented in Table 4.9 was used. Note that with an autoen-

coder, the outputs from the encoder are not the µ and σ for a Gaussian distribution from

which z is sampled, but the encoded z vector directly.

These two Vision architectures were tested against each other by using each to
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Setting Value

Epochs 10

Latent dim z ∈ R16

Mini-batch size 100

Optimizer Adam, lr=0.001

Hidden layers 2

Hidden dim 2048→ 1024

Table 4.9: [ptc / mdn-lstm / vision-ae] settings.

encode state frames into a latent z, and then reconstructing the latent z and measuring

how similar it was to the original state frame. As the state consists of integers, the

measure of similarity was simply just to see if the reconstructed frame contained the

same integer values for certain parts of the state. The parts included the position of the

agent on the board, which was thought to be very important during game play, and had

the most variety of values (121 – anywhere on an 11 x 11 board).

4.3.1.3 3. Train Model

The Vision based on an AE (autoencoder) performed the best (more details in Results,

Chapter 5) on the state frame reconstruction tests described earlier. So this Vision was

used to train a Model. Furthermore, a version of the Model was trained with no Vision

altogether – this was possible as the frames for Pommerman were small enough on

their own with dimensionality R375, and did not potentially need to be compressed to

a latent z. So the Model was modified to optionally take raw frames as input, to predict

the next frame.

Experiment Tag: [ptc / vision-ae / mdn-lstm / model]

The settings and hyperparameters listed in Table 4.10 were used to train a version of

the Model using latent z’s encoded using Vision trained with an AE.

Experiment Tag: [ptc / no-vision / model-lstm]

A version of the Model was trained using the raw state frames collected in [ptc /

mdn-lstm / random rollouts], instead of latent z’s encoded by Vision. Furthermore,

the MDN was removed as the output of the network, and it was trained using Mean

Squared Error to instead output raw state frames st+1 directly. The reason for this
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Setting Value

Data AE encoded z ∈ R16

Epochs 10

LSTM hidden dim 512

Gaussian mixtures 5

TBPTT sequence length 128

Optimizer Adam, lr=0.001

Predict done False

Table 4.10: [ptc / vision-ae / mdn-lstm / model] settings.

choice was that this version of Model was used to solely test the predictive power

and accuracy of a model learned in a LSTM network versus a DNC network, with-

out adding in the probabilistic benefits that would be useful to train a Controller. As

time was limited, this setup made sense to perform some quantitative tests for the core

objectives of this research. More details follow below in Section 4.3.2.

Setting Value

Data Raw state frames s ∈ R375

Epochs 10

LSTM hidden dim 512

Gaussian mixtures 5

TBPTT sequence length 128

Optimizer Adam, lr=0.001

Predict done False

Table 4.11: [ptc / no-vision / model-lstm] settings.

4.3.1.4 4. Train Controller

Experiment Tag: [ptc / vision-ae / mdn-lstm / controller]

As detailed in Section 3.1.4.3, the controller was adapted to handle pairs of two in-

dividual parameters, treating each as an individual agent part of the team. Using this

setup, the Controller pair was evolved using the settings and hyperparameters listed in

Table 4.12.

A version of the experiment was also carried out with the same exact setup in
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Setting Value

CMA-ES population size λ = 64

CMA-ES fittest genes µ = 1/4

CMA-ES target fitness Mean cumulative reward of 15*
Trials per mutation 16

Number of actions 6

Action dim a ∈ R6

Parameters dim W ∈ R8394, b ∈ Ra, 8400 in total, x2

Action calculation tanh(W · [st +ht + ct ])

Curriculum initial max timesteps=50, step=25

MDN temperature τ = 1.0

Environment type OpenAI Gym

Self-play freezing interval** 10 generations***

Table 4.12: [ptc / vision-ae / mdn-lstm / controller] settings. *This value was chosen because

the final reward of a team is +1 if it wins an individual instance of a game, and for these experiments the

total number of wins over the number of trails is returned, and used as the fitness metric for CMA-ES.

So if a team wins 15 games out of 16 trails, it has won ∼ 93.75% of games. **See Section 3.1.4.3.

***Multiple values were tried, but ultimately the value provided was chosen.

Table 4.12, except instead of using self-play, the opposing team was set up using the

deterministic Pommerman SimpleAgent.

4.3.1.5 5. Test

Experiment Tag: [ptc / vision-ae / mdn-lstm / test]

For testing the Controller consisting of a paired team of two agents, the live environ-

ment was used, and the team was tested against the deterministic Pommerman Sim-

pleAgent, over 100 total trials. The final test metric was the percentage of games the

team won over the total number of trials.

4.3.2 MDN-DNC

The random rollouts and trained Vision from the non-DNC set of experiments could

be used to train a MDN-DNC in the Model, and then train a Controller. However,

full experiments, to create a final MDN-DNC based trained agent to test in the actual
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environment, were not conducted due to limited time available.

Since the primary objective of this research was to investigate how well of a predic-

tive model could be learned in a DNC versus traditional LSTM, only one experiment

was carried out to train a DNC based model. This was so that tests could be con-

ducted by simply comparing the predicted states between a DNC based model and

LSTM based model, to test which one had learned to predict the next state st+1 more

accurately, given the current state and action [st +at ].

4.3.2.1 Model

Experiment Tag: [ptc / no-vision / model-dnc]

The Model was trained using the settings and hyperparameters defined in Table 4.13.

Setting Value

Data Raw state frames s ∈ R375

Epochs 10

LSTM hidden dim 512

Gaussian mixtures 5

TBPTT sequence length 128

Optimizer Adam, lr=0.001

Predict done False

DNC memory slots N = 256

DNC memory width W = 64

DNC read head R = 4

Table 4.13: [ptc / no-vision / model-dnc] settings.

4.3.2.2 Test

Experiment Tag: [ptc / no-vision / dnc-vs-lstm-test]

To test the DNC based model against the LSTM one, a different test was created.

Since the idea was to check which architecture learned a better predictive model, fu-

ture states predicted from the models were compared with the future states observed in

the actual environment. A random rollout using random actions would be performed in

PommeTeamCompetition-v0 in OpenAI Gym. At every state st observed in the envi-

ronment, and every random action at taken at that state, [st +at ] would be input to the
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models to receive st+1, and this prediction of the state at the next timestep would then

be compared with the actual state at the next timestep observed from the environment.

This test was performed over 1,000 new random rollouts. Rollouts stored on disk

with [ptc / mdn-lstm / random rollouts] could have been used, but the models had been

trained on those, so fresh rollouts were used. The accuracy between predicted st+1

(from both the LSTM and DNC models), and real st+1, included comparing the integer

values for equality. The following parts of the state were compared: position coor-

dinates, whether the position coordinates matched the position on the board, amount

of ammo, blast strength, can kick (true/false or 1/0), teammate, enemies, bomb blast,

bomb life, and alive (which players are alive). The percentage of correct parts of each

state were recorded for both the LSTM and DNC models for comparison.





Chapter 5

Results and Analysis

In this chapter, the results and observations from all experiments laid out in Chapter 4

are listed and analyzed.

5.1 CarRacing-v0

5.1.1 MDN-LSTM

The random rollouts collected for [cr0 / mdn-lstm / random rollouts] took approxi-

mately 12 hours to collect, and amounted to a total of 7GB of diskspace. Some of the

rollouts were randomly selected for visual inspection, and frames turned into animated

GIFs. A variety of scenarios were observed with the use of the improved random action

sampling method (Algorithm 1) – the car was observed going in all directions.

Training [cr0 / mdn-lstm / vision] on a GPU took approximately ten hours to com-

plete, including encoding each frame into a latent z at the end and saving it to disk,

pre-processed for Model. Sample frames were encoded and decoded using the CVAE

as it trained and saved to disk for visual inspection of what the network was learning.

A clear improvement in the quality of reconstructed frames was observed towards the

end of training.

Training [cr0 / mdn-lstm / model] on a GPU also took approximately ten hours

to complete with a truncated backprop through time (TBPTT) sequence length of 128.

Training was much faster with longer sequence lengths, but for lengths longer than 128,

a drastic degradation in predictions was observed, due to exploding gradients (gradient

norms were output through training to confirm). Gradient clipping was attempted but

training on a sequence length of 128 without clipping performed the best. Performance
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was measured by observing the loss values for erratic behavior, and through samples

of rollouts recreated using the model under training, and saved to disk as a collage for

visual inspection at every epoch.

Training [cr0 / mdn-lstm / controller] was by far the slowest. On a compute cluster

with 520 CPU cores, the experiment was halted after completing 400 generations of

evolution over five days. In those five days, a solid increase in performance was ob-

served – the mean cumulative rewards received in the environment steadily increased.

A graph of the mean cumulative rewards over the generations can be seen in Figure 5.1.

Figure 5.1: [cr0 / mdn-lstm / controller]: performance.

Tests for the trained Controller were performed as described in [cr0 / mdn-lstm /

test]. The final cumulative rewards over 100 rollouts are listed in Table 5.1. The agent

had clearely learned to perform well on the CarRacing-v0 task.

Agent Rewards

Random agent −72±3

Trained agent 753±13

Table 5.1: [cr0 / mdn-lstm / test]: mean and standard deviation of cumulative rewards

received by agents over 100 rollouts.
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5.2 ViZDoom: Take Cover

5.2.1 MDN-LSTM

[dtc / mdn-lstm / random rollouts] took only two hours to collect, likely because the

ViZDoom engine runs much faster. The data amounted to 13GB of diskspace. Again,

some of the rollouts were randomly selected for visual inspection, where frames were

saved as animated GIFs.

Training [dtc / mdn-lstm / vision] on a GPU took approximately ten hours to com-

plete, including encoding all frames from random rollouts into latent z. Sample frames

were encoded and decoded using the CVAE and saved to disk for visual inspection

of what the network was learning as training progressed. A clear improvement in the

quality of reconstructed frames was observed towards the end of training.

Training [dtc / mdn-lstm / model] on a GPU took approximately ten hours to com-

plete. Performance was measured by observing the loss values, and through visual

inspection of samples of rollouts recreated using the model under training. Further-

more, animated GIFs of simulated rollouts with predefined actions were created at the

end of training, to observe how the model responded to actions (for example, whether

the player moved left with a sequence of repeated [1,0] actions), and to observe if

fireballs were forming and following a plausible trajectory1. At times, the model was

observed to get “stuck”, where a [zt +at ] input produced a zt+1 which was almost ex-

actly identical to zt , and the simulation would fall into an endless loop. Adjusting the

temperature helped with the issue but not entirely. There were also other flaws in the

model observed at times through these animated GIFs, where fireballs would appear

in the middle of the screen out of nowhere. The additional “done” flag output by the

MDN-LSTM for this experiment was also tested. For each simulated rollout, the final

frame where done >= 0.5 was recorded, and in the vast majority of frames observed,

a fireball was spotted in the middle of the screen, meaning the model had learned that

the agent dies when it is hit by a fireball.

[dtc / mdn-lstm / controller] was trained on a compute cluster with 520 CPU cores.

Initially the Controller was trained without adding Gaussian noise to the initial frame.

This sometimes resulted in simulated rollouts where the agent was stuck as described

earlier – no fireballs would form and the agent would be in an endless loop. This also

hindered CMA-ES from learning, because for simulated training rewards were based

1An example of a simulated rollout in ViZDoom: Take Cover, with a predefined sequence of actions:
https://github.com/AdeelMufti/WorldModels/blob/master/asset/DoomTakeCover dream rollout.gif
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on how long the agent was alive, and being in an endless loop with no fireballs, the 0.5

threshold for “done” never being reached meant that the reward was very high. Adding

noise to the initial frame mitigated the issue. Training was stopped after approximately

two days and 200 generations of evolution.

The [dtc / mdn-lstm / test] experiment was used to check how well the Controller

performed, which was especially important because it was trained in the simulated

environment. The final cumulative rewards over 100 rollouts are listed in Table 5.22.

Agent Rewards

Random agent 223±105

Trained agent 680±411

Table 5.2: [dtc / mdn-lstm / test]: mean and standard deviation of cumulative rewards

received by agents over 100 rollouts.

5.2.2 MDN-DNC

Training [dtc / mdn-dnc / model] was extremely slow. Without the optimizations men-

tioned in Section 3.2, a single epoch would take 52 days. With the optimizations,

a single epoch took one-and-a-half days. As time was running out for this research,

though training of the MDN-DNC was planned for a full 20 epochs as was done for the

MDN-LSTM counterpart, just a single epoch of training was used. However, with just

a single epoch, the MDN-DNC appeared to be performing remarkably well with some

preliminary testing. A series of animated GIFs were created in simulations, by run-

ning them through pre-defined sequences of actions (notably, left for 100 timesteps,

then right for 100 timesteps, repeatedly). The movements were smooth and respon-

sive to the actions, and fireballs were forming and following correct trajectories. There

were fewer signs of the simulation getting “stuck.” The MDN-DNC trained for 1 epoch

appeared to be more robust than what was observed for the MDN-LSTM trained for

20 epochs on the same data. Regardless, quantitative improvements could only be

gathered through training and testing the Controller. [dtc / mdn-dnc / controller] was

trained for approximately two-and-a-half days for 250 generations.

As described in Experiments (Chapter 4) the [dtc / mdn-dnc / test] experiment

differed from previous tests of the Controller in that a 100 rollout test in the real en-

2A recording of the trained Controller in the real environment can be seen at:
https://github.com/AdeelMufti/WorldModels/blob/master/asset/DoomTakeCover rollout.gif



5.2. ViZDoom: Take Cover 57

vironment was run from a snapshot at every fifth generation of evolution. This was

done to be certain how the MDN-DNC performed in the real environment (since it was

being trained in simulations) as it evolved, but was very compute heavy and hence a

lot more costly to perform.

In order to compare the performance of the MDN-DNC based Model and Con-

troller against the MDN-LSTM Model and Controller, a fair assessment would be to

use a MDN-LSTM also trained for just one epoch rather that 20 epochs. Thus, a

snapshot at one epoch of the MDN-LSTM from the [dtc / mdn-lstm / model] experi-

ment was used as the Model, and another MDN-LSTM based Controller was trained

in parallel for 250 generations as well. This Controller was tested similarly, with a

100 rollout test in the real environment run from a snapshot at every fifth generation of

evolution.

The MDN-DNC Controller outperformed the MDN-LSTM Controller by a margin.

A graph comparing the mean cumulative rewards for each of the two Controllers, over

100 rollouts, at every fifth generation, can be seen in Figure 5.2.

Figure 5.2: MDN-DNC Controller versus MDN-LSTM Controller.

The Controller based on MDN-DNC (trained at one epoch) even outperformed the

fully trained MDN-LSTM (20 epochs) Controller from the [dtc / mdn-lstm / controller]

experiment – the MDN-LSTM achieved a mean cumulative reward of 680±411 over

100 rollouts, whereas the MDN-DNC achieved a mean cumulative reward of 761±452

over 100 rollouts around generation 210.
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Another interesting observation about the MDN-LSTM trained for one epoch was

that the simulated rollouts generated as animated GIFs for visual inspection were jit-

tery, and not as responsive to actions as the MDN-DNC was observed to be. It was clear

that the model of the environment it had learned was not as robust. During Controller

training, animated GIFs of the Controller performing in a simulation were created, to

observe what the Controller had learned. Surprisingly, the Controller had learned to

exploit weaknesses in the MDN-LSTM model. It would perform a certain sequence of

actions that would lead the Model to getting “stuck” in a loop. And since training in

the simulation is done based on the number of timesteps the agent is alive (done< 0.5),

CMA-ES would see the genes that led to this policy as the fittest, as they would sur-

vive the longest due to the endless loop. A similar kind of adversarial policy was also

observed by Ha and Schmidhuber (2018). Interestingly though, this did still carry into

the real environment, because the MDN-LSTM did better than a completely random

agent. A guess is that as the adversarial policy involves a certain sequence of actions,

they luckily allowed the agent to live longer than a random one, though it failed to

generalize beyond a certain point (a mean cumulative reward of 400).

Figure 5.3: Controller discovers an adversarial policy by exploiting weaknesses in a

MDN-LSTM Model trained for one epoch. After a certain sequence of actions in the

simulation, a rogue fireball appears on the screen, and every [zt +at ] produces a zt+1

that is almost identical to the original zt (with the same fireball stuck in place), causing

the simulation to fall in an endless loop.

5.3 PommeTeamCompetition-v0

5.3.1 MDN-LSTM

[ptc / mdn-lstm / random rollouts] were the fastest to collect, likely because the state
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is not rendered as pixels. 10,000 rollouts were collected in one hour on a Lenovo

Thinkpad W520, amounting to 1.6GB of diskspace.

[ptc / mdn-lstm / vision-vae] and [ptc / mdn-lstm / vision-ae], Vision with VAE

and Vision with AE as specified in Section 4.3.1, were both very fast to train, com-

pleting under an hour on a GPU. The VAE saved pre-computed µ’s and σ’s for each

state frame to disk, whereas the AE saved the latent z’s. To test the performance of the

two networks, new state frames were collected over 100 rollouts and encoded and sub-

sequently decoded (“reconstructed”), and checked if certain parts of the reconstructed

state were equal to the original state. The results are presented in Table 5.3.

State VAE AE

Position 47% 62%

Ammo 52% 64%

Teammate 82% 75%

Table 5.3: [ptc / mdn-lstm / vision-vae] versus [ptc / mdn-lstm / vision-ae]: percentage

of reconstructed frames matching the original frame for certain parts of the state.

As the Vision with AE showed the best overall reconstruction accuracy, it was used

moving forward. [ptc / vision-ae / mdn-lstm / model] was trained and subsequently

used in training [ptc / vision-ae / mdn-lstm / controller]. As self-play was being used

to train the team, a pattern was observed in the mean cumulative rewards over the gen-

erations where the rewards would increase for ten generations, but drop down again

when the “frozen” version of the team being used as the opponent was updated with

the latest. At 50 generations of training the Controller, [ptc / vision-ae / mdn-lstm /

test] was performed to check how well it generalized by having it play against Sim-

pleAgent over 100 trials. The team performed poorly – no better than a random team.

As time was limited, the Controller training was halted altogether and a version was

created to play against a team of SimpleAgents rather than using self-play. After 325

generations of training against SimpleAgent, the team was tested over 100 rollouts

and was observed to win 18% of games, whereas a randomly initialized team would

win only 12% of games. The Controller experiments for PommeTeamCompetition-v0

were halted at that point as the time available to conduct this research had run out.

The primary objective of this research was to investigate how well of a predictive

model could be learned in a DNC versus traditional LSTM. Thus, a final experiment,

[ptc / no-vision / model-lstm], was carried out to train a MDN-LSTM model in the
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PommeTeamCompetition-v0 environment.

5.3.2 MDN-DNC

[ptc / no-vision / model-dnc] (DNC based model) was trained to test against [ptc / no-

vision / model-lstm] (LSTM based model) using the test methods described for [ptc /

no-vision / dnc-vs-lstm-test] (Section 4.3.2.2). The results are graphed in Figure 5.4.

Figure 5.4: [ptc / no-vision / dnc-vs-lstm-test]: testing the predictive power of MDN-DNC

over MDN-LSTM. The Random percentages are simply random uniform guesses at the

possible integer values in the individual components of the state, that were guessed

correctly.

It was observed that a MDN-DNC outperformed a MDN-LSTM on learning to

predict the PommeTeamCompetition-v0 environment. Given a state st and an action

at , the MDN-DNC got better accuracy in predicting st+1 when compared with the

actual st+1 observed from the environment.



5.4. Analysis 61

5.4 Analysis

On the baseline MDN-LSTM tasks for CarRacing-v0 and ViZDoom: Take Cover, the

goal was to replicate the results of Ha and Schmidhuber (2018), though the final re-

wards achieved were not as high. This is thought to be because Controller training

had not yet completed. For example, the mean rewards for CarRacing-v0 were still in-

creasing (Figure 5.1) when training was halted due to time constraints, to make way for

other experiments on the same resources. Perhaps with more training of the Controller,

higher rewards might be achieved. For ViZDoom: Take Cover, the temperature hyper-

parameter for MDN-LSTM was perhaps not ideal, and could be adjusted to achieve

better rewards (along with more generations of training the Controller). The guess for

adjusting the temperature is made because when sampling from the MDN, the coeffi-

cients of the Gaussian mixture models can be dramatically affected as the temperature

is varied. Furthermore, the MDN-LSTM did not learn a robust model of the environ-

ment and would often get stuck in an endless loop, and it was observed that higher

temperature values would mitigate the loop issue.

As seen through these experiments, the DNC outperforms LSTM when learning a

predictive model of the environment. This does not come as a surprise, as the DNC is

intended to be a Neural Turing Machine, which can learn algorithms on highly complex

tasks according to Graves et al. (2016). But aside from the external memory and a

complex internal setup to mimic a Turing machine that can learn, the DNC did not

necessarily have any other unfair advantage over LSTM in these experiments – as far

as additional capacity when it comes to neural network architectures (number of hidden

layers, number of hidden units, and so on). The DNC’s controller consists of LSTM,

which can be set to contain a certain number of hidden units. These hidden units

were kept the same for all experiments between the MDN-DNC and MDN-LSTM.

Essentially both variations had the same number of layers and units whether LSTM or

linear. Thus, the external memory and algorithm learning capability of the DNC truly

set it apart.

PommeTeamCompetition-v0 presented a more challenging environment and task

over CarRacing-v0 and ViZDoom: Take Cover, for reasons such as sparse rewards,

and other reasons detailed in Section 2.5.3. So it was no surprise that the Controller

had difficulty in learning the task. This perhaps had to do with how the Controller was

set up for this task – how two independent sets of parameters were paired and evolved

separately in the same environment, or how the action calculation methodology was
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set up. The controller was simple – a mere 8,400 parameters whereas the CVAE has

4,348,547. Perhaps a simple, small, linear model is not enough to learn more complex

tasks, and more powerful Controller architectures are necessary.



Chapter 6

Conclusions and Further Work

6.1 Conclusions

For this thesis, research was carried out to test the DNC as a predictive, probabilistic

model used for RL. The DNC was used as the recurrent layer (the RNN) in the MDN-

RNN used for learning a model of an environment. Tests were carried out in a new

architecture, the MDN-DNC. Simulations of the ViZDoom: Take Cover environment

were created as animated GIFs to observe how it responded to pre-defined sequences

of actions. The MDN-DNC appeared to have learned a better model of the environ-

ment when compared to its MDN-LSTM counterpart, and was less prone to getting

stuck in loops or having other glitches such as fireballs appearing randomly out of

sequence. But the ultimate test was to train a Controller with RL, using the learned

model, and compare the final cumulative rewards it received in the real environment.

A MDN-DNC based model trained for only 1 epoch was used to simulation-train a

Controller, which was able to outperform a Controller using a MDN-LSTM model

(also trained for one epoch), when tested in the real environment. The MDN-DNC

was also tested against MDN-LSTM for learning the PommeTeamCompetition-v0 en-

vironment, where the MDN-DNC was able to predict future states more accurately

than its counterpart.

Thus it can be concluded that the MDN-DNC is able to learn a more robust model

of an environment, at least for the environments tested for this research. MDN-DNC

based models could be used to run robust simulations for RL, when using the real envi-

ronment may be too costly, dangerous, or otherwise expensive to use repeatedly. And

so it follows that the DNC is perhaps beneficial in Deep Reinforcement Learning, par-

ticularly when model-based methods are used, and could potentially serve as a useful

63
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tool in the ladder towards Artificial General Intelligence (AGI).

6.2 Further Work

The MDN-DNC was able to outperform a MDN-LSTM in the ViZDoom: Take Cover

task when training a full agent (including the Controller). However, the performance

of a fully trained agent with a MDN-DNC was not tested in PommeTeamCompetition-

v0, due to time constraints and due to the fact that the MDN-LSTM “baseline” agent

performed underwhelmingly. This was likely due to reasons presented in the re-

sults analysis (Section 5.4) – mainly, the Controller not having been adapted ide-

ally to the Pommerman task as it is so different than the others due to having to

perform multi-agent learning. While the MDN-DNC versus MDN-LSTM tests on

PommeTeamCompetition-v0 showed superior predictive power of the MDN-DNC, a

complete test would include a fully trained RL agent that makes use of the MDN-DNC.

Thus, the MDN-DNC remains to be tested with a trained Controller in more complex

environments other than ViZDoom: Take Cover.

The action calculation, when there are numerous actions, presents a challenge.

When using the approach to split a single scalar, produced by taking the dot product

of the input with the Controller’s parameters, into a range (Section 3.3.2), leads the

Controller to be entirely biased towards two actions, which hinders training. Perhaps

some other approaches for calculating the actions could be explored, such as using a

different activation function rather than tanh, normalizing the inputs to the Controller,

adjusting the initial seed of the Controller’s parameters, and so on.

Another area that could be explored when using a MDN-DNC to train the Con-

troller, is to add parts of the DNC’s memory to the Controller’s inputs. The Controller

typically receives as input the compressed latent zt from the environment or the sim-

ulation, the hidden state of the LSTM ht , and the cell state of the LSTM ct . Perhaps

the Controller could also benefit by additionally receiving the DNC’s memory as in-

put. The DNC contains a number of read heads, which return parts of the memory

read to the DNC’s own controller (LSTM layer) at every timestep – this memory is

cruical to the DNC’s performance. For these experiments, the number of read heads

were four, with a memory width of 64, which means that the DNC’s LSTM layer re-

ceives a 4x64 = 256 dim input at every timestep. This is a reasonably small amount of

additional input that could be presented to the Controller.

The World Models approach is limited in that the Vision and Model can only go
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as far as to perform well on scenarios collected by the random rollouts, which are

performed using a random policy. It is not very plausible that the random policy will

be able to get to all scenarios or parts of the environment (such as all levels of a long

game). Thus, the World Models approach could be extended to work in an iterative

manner. During the first iteration, a random policy could be used to collect the rollouts,

to train Vision, Model, and Controller. The Controller may potentially only be able to

get up to a certain point in the environment (such as past just the first level in a game).

Afterwards, with all future iterations, new rollouts could be collected using the policy

learned by the Controller combined with randomness, with the idea that new scenarios

could be encountered in the environment and logged to disk. The Vision, Model, and

Controller could be trained again with the new set of “random” rollouts and potentially

perform well further into the environment.

6.3 Contributions

There were a few notable contributions made through this work.

At the time the research was planned and carried out, a search across Google,

Google Scholar, and research publications archives such as arXiv, did not yield any

existing work on using a DNC to learn a predictive model of an environment in the RL

context. Thus, this research makes the first attempt to do so, and finds positive results

in favor of the DNC.

The distributed evolution of CMA-ES (Figure 3.5) that scales dynamically to the

size of a compute cluster is another contribution this research offers. The algorithm

and methodology to distribute the genes worked well in practice.

The elementary form of curriculum learning applied to the Controller is also a new

contribution. This sped up training of the Controller in wall-clock time, though it is

not obvious if it helped with the performance on the task itself.

This work offers a complete implementation of the World Models framework1.

When the research was planned and started, no complete implementation was available

publicly. Since then, Ha and Schmidhuber (2018) released their code in Tensorflow. So

the efforts from this research offer an alternative complete implementation in Chainer.

And lastly, another contribution is a highly optimized implementation of the Dif-

ferentiable Neural Computer in Chainer2.

1https://github.com/AdeelMufti/WorldModels
2https://github.com/AdeelMufti/DifferentiableNeuralComputer
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Appendix A

A.1 MDN Toy Task

Consider the following inverted sinusoidal function, where U is the real number uni-

form random distribution:

y = U[0,1), y ∈ R500 (A.1)

x = sin(2πy) + 0.2U[0,1) ∗ cos((2πy)+2) (A.2)

This function presents a one-to-many mapping – a single input x value mapping to

multiple output y values – and can be used for checking a Mixture Density Network

(MDN) implementation. If graphed, the functions looks as shown in Figure A.1.

Figure A.1: The graph of inverted sinusoidal function in Equations A.1, A.2.

If a simple feedforward neural network is trained using Mean Squared Error (MSE)

to model y =Wx+b, the network learns to predict the mean of the y values given an x

value, as seen in Figure A.2.
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Figure A.2: Graph of inverted sinusoidal function (blue) overlaid with predictions (red)

from a neural network trained with MSE.

However, if the feedforward network instead outputs a Gaussian Mixture Model

(GMM), it can be sampled from to predict a y value given an x value. This network

can learn to predict multiple y values given a single x value accurately, as seen in

Figure A.3.

Figure A.3: Graph of inverted sinusoidal function (blue) overlaid with predictions (red)

sampled from a neural network trained to output a GMM.

A.2 CMA-ES Toy Task

Consider a shifted Schaffer function with global minimum (“solution”) at point (10,10),

as seen in Equation A.3.

f (x,y) = 0.5+
sin2[(x−10)2− (y−10)2]−0.5
[1+0.001[(x−10)2 +(y−10)2]]2

, f (10,10) = 0 (A.3)
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The CMA-ES task can be modeled to simply learn these solution points, and hence

in this case evolve solution s∈R2. The fitness function F() for CMA-ES can be treated

as the negative square error between the solution being tested, and the actual solution,

against the Schaffer function, as follows:

F(s1,s2) =−( f (s1,s2)− f (10,10))2

Therefore, the task for CMA-ES is to find the solution (s1 = 10,s2 = 10). Given

the right population size λ and the right µ for CMA-ES, it eventually converges to

a solution. With λ = 64 and µ = 0.25, a visualization of CMA-ES as it evolves a

population over generations can be seen in Figure A.4.

(a) 1% (b) 33%

(c) 66% (d) 99%

Figure A.4: CMA-ES progression on the shifted Schaffer function toy task with solution

at f (10,10). Blue dot represents the solution. Red dots the entire population being

tested. The green dot the mean of the population (i.e. the solution s in the current

generation).
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A.3 DNC Toy Tasks

To test the Differentiable Neural Computer, a few toy tasks can be used, including:

1. Repeat: Simply echo a row-wise sequence of randomly generated 0’s and 1’s.

2. Addition: Sum a randomly generated row-wise sequence, with a 1 in each row

representing a number based on the column (position) it is contained in. Example

below.

3. Priority sort: Harder task. Essentially involves repetition as well. A row-wise

sequence of randomly generated 0’s and 1’s are to be sorted according to a prior-

ity assigned to each row, with the priority sampled uniformly from [-1,1]. This

task was used in the Neural Turing Machines (DNC’s predecessor) paper (Graves

et al., 2014).

While the authors of the DNC tested it on much more complex problems (Graves

et al., 2016), these tasks are easy to implement and useful for quickly testing the DNC

implementation.

(a) Input (2+0+2+0+4+0+4) (b) Target (c) Output

Figure A.5: DNC addition toy task input/output example.

An additional test for the DNC is to check its generalizing ability, to handle longer

sequences than it was trained on. This can be tried on any task, and compared against

a traditional LSTM similarly trained on the same task with the same data and sequence

lengths. This generalization test was done using the addition task with two networks

(LSTM, and DNC with a 256x64 memory matrix – both with 256 hidden units). Both

were trained with the same data and sequence lengths, but tested after training on

increasingly longer sequence lengths. The results can be found in Figure A.6.
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Figure A.6: Error over increasing sequence lengths on the addition task with tradi-

tional LSTM versus DNC trained for 50k iterations. Both were trained using a random

sequence length between two and 12, and had never seen longer sequence lengths

during training. The traditional LSTM network quickly diverge on sequences greater

than 12, while the DNC network is very robust to generalizing on longer sequences.
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